
NASA-TM-10BI31
GO _jxp//_

7xJ --6 r-- f/F/,.

F,;l
t

EXPERIENCES IN THE IMPLEMENTATION OF A LAIIGEAdo PROJECT

Sally Godfrey
Code 552

GoddardSpace Flight Center u/x-

Greenbelt, Md.20771

(301) 286-3600

Carolyn Brophy

Department of Computer Science
University of Maryland
College Park, Md. 20742

(301) 454-8711

- %.

[

BACKGROUND

During the past several years, the
Software Engineering Laboratory (SEL) of
Goddard Space Flight Center has been
conducting an experiment in Ado [6],[8] to
determine the cost effectiveness and

feasibility of using Ado to develop flight
dynamics software and to assess the effect

of Ado on the flight dynamics environment.
This experiment consists of near parallel
developments of a dynamics simulator in both
FORTRAN and Ado. A study team consisting of
members from the SEL has monitored
development progress and has collected data
on both projects throughout their
development.

Both the Ada and the FORTRAN teams

began work in January, 1985, using the same
set of requirements and specifications to
develop their simulators. The FORTRAN
dynamics simulator team completed acceptance

testing by June, 1987, after following a
development life cycle typical of projects
in the flight dynamics environment [S]. The
development was carried out on a DEC VAX-
11/780 and the completed FORTRAN dynamics
simulator consists of about 45,000 source
lines of code.

The Ado development began with a period
of training [7] in both the Ada language and
the methodologies appropriate for Ada [11].
The team was not previously experienced in
Ado, although they were more experienced
than the FORTRAN team in both the number of
years they had programmed (8.6 years
compared to 4.8 for the FORTRAN team) and
also in the number of languages they knew (7
compared to 3). The Ado team was also
experienced tn more types of software
applications, but only 43% of the Ado team
had previous dynamics simulator experience
compared to 66% of the FORTRA/I team.

Following the training period, the Ada
team began a phase of analyzing the
requirements and then they began design
using an object oriented methodology called
GOOD (General Object Oriented Design) which
was developed by the team during the
training and design phases. More
information on GOOD and the lessons learned

during the design phase can be found in [2],
[4], and [10].

Coding and unit testing began in "April,

1986, on a DEC VAX 8600 and continued
through dune 1987. The Ada project has
completed system testing and consists qf
approximately 135,000 source lines of code*.

This paper will describe some of the
similarities and differences of the two

projects and will discuss some of the
interesting lessons learned during the
code/unit test and integration phases of

this projec_ |_--r _d

INFORMATION COLLECTION

The information presented .in this paper
was _ollected by using the following four
methods: !) Collection of SEL forms-
2) Interviews_3) Observation of development
'_) CMe analy{is. The SEL forms solicit such
_nformation as a detailed breakdown of the

hours spent by programmers, managers, and
support staff on a project and detailed
information on changes and errors which
occurred during the development. During the
course of the project, over 2000 forms were
collected; about 625 of these documented"
errors and changes.

1. A source line of code is defined to be
any 80 byte record of code including
comentary, blank lines and executable code.

[

[

[

[

[

[

[

t

[

[

[

[

5207

(NASA-IM- IOF313 1) EXPERIENCES IN
.qcT_E IuPLEMENTATION OF A LAR Ado

PR._JECT (C_ASA) 7 D

N93-7ugI2

Uncl as

[
!

]

]

]

]

]

]

]

]

]

]

]

]

]
U
_J

]

]

]

Each member of the Ada team {II total)
was interviewed individually to gain some
insight into the experiences he or she had
during implementation. Team members were
asked questions concerning ease or
difficulty of implementing features, unit
testing, integration, correcting errors,
using tools, etc. Questions concentrated on
an individual's particular area of work, but

general subjective questions were asked of
the entire team. Observation of the

development was accomplished by attending
reviews and regular implementation meetings
held by the team. These regular

implementation meetings were actual working
meetings in which team members discussed

progress, solved implementation problems,
clarified interfaces, shared knowledge, and
planned implementation strategies. In
addition, much information was gained
through informal conversations with the team
on implementation progress. Information
received through code analysis was actually
collected two ways. First, the code was
examined to tabulate such attributes as

number of modules, number of lines of code,
number of comments, etc. Second, another Ada
team, in the process of Ada training,

performed code reading on parts of the
=dynamics simulator code as a training
exercise and they provided their comments on
the code.

The remainder of this paper will
concentrate on some interesting comparisons
between the FORTRAN and the Ada projects and
some of the major lessons learned during the

implementation phase of the Ada project.

I. FORTRAH/Ada PROJECT COMPARISONS

Several factors need to be considered

when trying to directly compare metrics from
the FORTRAN project and those from the Ada
project. First, the FORTRAN project was
considered to be the "real" operational
version of the dynamics simulator being
developed, and as such, it was necessary for
that project to meet the schedules imposed
by an impending launch date. The Ada team,
on the other hand, was allowed a more
relaxed schedule for development which
included adequate training time, time to
experiment with design methodologies, and
finally, time to recode or enhance if
"better" methods occurred to the developers.
One result of this extra time was the
development of a much more sophisticated
user-Interface for the Ada project.

5207

Second, this general type of dynamics
simulator was a very well-known application
for the FORTRAN team since similar
simulators have been built repeatedly in
this environment. Thus, the general design
of the FORTRAN simulator was reused from

previous designs and was known to be a very
satisfactory design for the app.l_cation. In
addition to the design, much of the code was.
reusable--about 36%. The Ada team developed
a new design [I] which they felt was more
suitable for Ada and which they felt more
accurately represented the actual physical'

system they were trying to simulate. While
this design may be a better physical
representation 6f the problem, it did not

"have the advantage of previous use to refine
and correct any possible problems. No Ada
code was available for reuse but several

FORTRAN routines were used by the Ada team.
These comprised only about 2% of the code.

Keeping in mind these differences in
the actual projects, we will discuss some
interesting FORTRAN/Ada comparisons.

-I.I Size of Ada project is larger than
FORTRAN project.

As mentioned in the background section,
a simple count of the number of lines of
code, including every line of any type as a
line, yields a count of 135,000 source lines
of code for the Ada project and a count of
45,500 source lines of code for the FORTRAN

project. These figures are really a little
misleading, since the Ada line count
includes 23,000 lines of blank lines which
are inserted for readability. Also, the Ada
count includes 49,000 lines "of comments
compared to 19,500 lines of comments in the
FORTRAN count. When the number of executable

lines of code are compared, we find that the
Ada project has 63,000 lines of executable
code compared to 25,500 for the FORTRAN

project.

In these particular projects, there
were other reasons why the Ada project was

larger. As we mentioned earlier, the Ada
project was not constrained by schedule
pressure and so they developed a system with"
more functionality--a system with more of
the "nice to have, but not required"

features. Naturally this increased the size
of the system. To some extent, the Ada
language itself was a driving factor for the
size difference, since it requires more code
-to write such constructs as Rackage

specifications, declarations, etc. In

4-3

PREtEDING PA_E BLANK NOT FILMED

addition, the Ada team used a style guide
[3] that required certain constructs to be
spread over several lines of code for
readability.

Another interesting way to compare the
size of the two projects is to examine the
size of the load modules for each one. This

also shows the Ado system to be larger-
occupying 2300 512-byte blocks, compared to
953 512-byte blocks for the FORTRAN load
module.

1.2 Project cost is similar for the two
implementations.

One of the problems with trying to
compute productivity is that there are

many ways to compute it. Usually, in the
Software Engineering Laboratory, the
calculation is made by taking the total
number of source lines of code developed and
dividing by the number of hours spent on the

project. The number of hours is carefully
recorded on forms weekly and includes the
hours spent on all phases of the project
beginning with requirements analysis and
ending with the completion of acceptance
testing. In order to compare the FORTRAN and
Ado projects, the calculations were made

using the number of hours spent on each
project from requirements analysis to the
completion of system testing since.
acceptance testing has not yet been
completed on the Ado system. As we see in
figure I, using the total number of source
lines of code (SLOC) for each project, we
get a productivity of 3.8 SLOC/hr. for the

FORTRAN project and a productivity of 6.;
SLOC/hr. for the Ado project. Rememberin(
that the Ado code included many blank linei
of code that were not included in th(
FORTRAN line count, we recomputed the Ad_

figure, excluding the blank lines and got
productivity of 5.2 SLOC/hr. When w(
considered the effort require/] just tc
develop new lines of code and not the

reusable code, the figures are 2.7 SLOC/hr.
for FORTRAN and 6.1 SLOC/hr. for Ada with
blanks and 5.0 SLOC/hr. without blanks. This
would seem to imply that Ado is more
productive, but we must remember that it

took many more lines of code to develop the
Ado system and that the style guide caused
many Ado constructs to be spread over
several Iines.

Let's look at the figures when we
consider only executable lines of code.
Using only the number of lines of code which

are executable, we got a productivity figure
of 2.14 StOC/hr. for the FORTRAN project and
2.8 SLOC/hr. for the Ada project. When we
considered that many of the Ado constructs
use more than one line, we looked at the

number of executable statements-(or
semicolons) in the Ada project and
recomputed productivity. Similarly for the
FORTRAN, we counted statements and their
continuations as one executable statement.

Now we get a productivity of 1.85 SLOC/hr.
for the FORTRAN project and .96 SLOC/hr. for
the Ado project. Looking at the number of
executable new statements in the FORTRAN

yields a figure of 1.2 SLOC/hr. compared to
.95 SLOC/hr. for the Ada project. These
calculations would make FORTRAN look more
productive.

FORTRAN

Lines of Code

Used for Computation Productivity

3.8 SLOC/_Total lmes ofcode

Total lmesofcode "

excluding blaalcs 3.8 SLOC/hr
Executable li.es

of code 2.14 SLOC/hr

2.7sLoc/ New lines of code

New lines of code

excluding blanks
Executable statements

Executable _new"

statement-

2.7sI,oc/
Lss

1.2 SLOC/hr

Ada

Lines of Code

Used for Computation

Total linesofCode

Total lines of code

excluding blanks

Productivity

6.17 ,SLOC/i_-

5.12 SLOC/hr
Executable lines

of code 2.8 SLOC/hr

New lines of code 6.08 SLOC/hr
New lines of code

excluding blanks

Executable statements

Executable _new"

statements

s.os SLOC/
0.96 SLOC fhr

0.95 SLOC/Er

Figure 1: Productivity Comp_isons

5207
4-4

I

e

(

[

[
r

t

[

[

[

[

[

[

[

[

[

[

[

l

]

3

4 d.

Perhaps a better way of viewing the
productivity problem is to examine it from
the standpoint of cost to produce the

product. The total cost of the FORTRAN
project from requirements analysis through
acceptance testing was about 8.5 man-years
of effort. The Ada project cost, using
actual figures from requirements analysis

through system testing and estimating the
acceptance testing cost, is around 12 man-
years of effort. When we take into
consideration the percentage of reused code
in the FORTRAN project and assume all the

code generated was new code, it would have
taken about 11.5 man-years of effort to
develop the FORTRAN system. This makes the
cost of developing the two systems roughly
the same_ especially when we consider that

the Ada project was a "first-time" project
and that the Ada project had slightly more
functionality than the FORTRAN.

1.3 Error types found in both projects
show similar profiles.

Detailed information was kept on the
types of errors found in both projects and
based on 104 forms collected for the FORTRAN
project and 174 forms collected for the Ada

project, the error types show a similar
profile. Figure 2 shows the distribution of
error types for each project.

Error Type" FORTRAN b Ada _

% %

Computational 12 9

Tnitia]ization 15 16

Data Value or

Structure 24 28

_c/_ntrol

Structure 16 lg

Internal Interface 29 22

ExternalInterface 4 6

"T'hererosy be more thu one errm"reported on • form.

4'104formJ,

e174 formJ

Figure 2: Error Profile

5207

An example of a computational error
might be an error in a mathematical
expression. An error like using the wrong
variable would have been classified as data
value or structure error. Internal interface
errors refer to errors in module to module

communication, while external interface
errors refer to errors in module .to external
communications.

Perhaps one result here that is
suprising is that the team expected to have
fewer internal interface errors with Ada,

but the percentage is not significantly
different from the FORTRAN. When the
detailed information on the Ada errors was

examined, we learned that many of the errors
classified as internal interface errors were

caused by a type change of some sort. For
example, a variable may have been classified
as one type in one portion of the code and
different type in another, or the original
type chosen for a variable might not have
been suitable. Another common reason that

internal interfaces were changed was that a
new function was added to the module which

required an interface change. Also, in some
cases, a developer would find he needed
another variable from some other module

which he did not originally think he needed.

1.4 The percentage of "very easy to
find" errors was less in the Ada project
than the FORTRAN project.

Detailed information was captured on
the effort required to isolate errors .The
error levels were categorized a) very eas)
or less than one hour b) easy or one hour to
one day c) hard or one to three days
d) very hard or more than three days. lhc
FORTRAN team found that 81% of their error-.

were in the "very easy" to isolate category.
In comparison, the Ada team found only 59_
of their errors in that category. There ar_
several possible explanations for this.
First, many of the errors found by the
FORTRAN team were types of errors which
would have been identified by a mor:
rigorous compiler such as the Ada compiler
Throughout the project, the Ada team fel '
that the compiler was one of the most usefo
tools because it was able to pinpoint man:"
errors at the early stage of compilation.
Another possible explanation for the
diFFerence in effort to locate errors is the
difference in experience of the teams with
the language. The Ada team was not

4-5

experienced in Ada.and did not feel they had
the same intuition as the FORTRAN team did

to aid in isolating errors.

2. HA30R LESSONS LEARNED OURING
IMPLEMENTATION OF THE Ada PROJECT

2.1A flat structure usually has more
advantages than a nested structure. Thus,
nesting should be used sparingly.

The object oriented design used by the
team [9] seemed to promote a nested
structure for information hiding purposes.
While the nesting was not explicitly
specified in the design, it seemed to be a
natural manifestation of the object oriented
deslgn--so the parts of an object or a
package would be included inside that
package instead of being called in from the
outside. The team felt that they were
implementing nesting conservatively, and
indeed, one view of the system shows that it

has 124 packages of which 55 are library
units. However, the nesting in the system
was extensive--many levels deep in some
places.

This amount of nesting caused many
problems for the Ada developers. First,
nesting increased the amount of
recompilation necessary during
implementation and testing. Many more units

• had to be recompiled when changes were made
to the system since Ada assumes dependencies
between nested objects or procedures even
when there are none. Since compilation is a
lengthy process, this slowed down the
development process. Much unneccessary
recompilation could have been avoided by the

use of more library units.

Second, nesting increased the difficulty
of unit testing. In fact, the greater the
level of nesting, the more difficult the
unit testing was. The lower level units were
not In the scope of the test driver, and a
debugger was necessary to "see" into these
lower level units. For the purposes of unit
testing In FORTRAN, a unlt Is defined as a
subprogram. When this same definition was
applied to the Ada, unit testing
difficulties arose since many of these units
could not be tested in isolatlon. Instead,
it was necessary to integrate units which
fit logically together, usually integrating
up to the package level, before testing was

done. Nesting also increased the difficulty

of tracing problems since it is-hard t
identify the calling module of a neste
unit.

2.2 A high degree of nesting was foun
to be an impediment for reuse.

Perhaps the major advantage" of usin
library units instead of nested units i
that their use increases the potential o
reusability. When nesting is used, the siz
of the compilation units, the componen
sizes and the file sizes all tend to b

larger. Thus when these larger units ar,
examined for potential reuse, it Is mucl
more likely that only a portion of the larg,
unit will actually have the code whicl
performs the needed function for the nel
system. Then it becomes necessary to unnes_
the code before reuse is possible. Thi:
unnesting is very labor intensive.

Another similar Ada project presentl_
under development in the SEL has examine(
this project's code for reuse and has foun(
that it could use as much as 40% of th(
original code. However, it was necessary tc
unnest all of this code before reuse. This

use of library units would have enabled the
second project to reuse the code directly.

2.3 "Call-through" units are not an
efficient way to implement an object-
oriented design.

"Call-throughs" are procedures whose
only function is to call another routine.
These were used to group appropriate modules
exactly as they were represented in the
design so that a physical module of code was
created for every object in the design.
Thus, when objects were nested inside
objects, a "call-through" was used to get to
the inner object. Implementation of "call-
through" units could be accomplished using
either nested or library units. This
practice resulted in additional code which
increased the system size and testing
complexity. This unneccessary code could
have been eliminated if some of the objects
in the design were left as logical objects,
rather than coding every object in the
design to preserve the exact design
structure.

C

[

[

[

[

[

[

[

[

[

C

5207

4-6

l

9
I

]

]

]
--l

]

l
m

]

]

]

]

]

]

]

]

]

]

]

2.4 An abstract data type analysis
should be incorporated into the design
process to control types.

Since the Ada team was not previously
experienced in Ado, it took time to get
accustomed to the strong typing of Ado. The
tendency was to create too many types. A
type would be created with a strict range
for a particular portion of the application.
Then other areas of the application would
need a similar type, but the original one
would be too restrictive. So another type
was created, along with a corresponding set
of operations. Some of the difficulty with
this method of typing began to emerge during
critical design,__wi_ere-interface problems
developed due to typing differences.

Multiple types also increased the
difficulty of testing modules. Test drivers
needed to be larger to handle multiple types
and were often coded as large "case"
statements in order to provide a testing
capability for each type.

A recommendation for future Ado

developments is to incorporate an abstract
data type analysis into the design process
to control the generation of types. A more
general new type would be defined, then many
subtypes of that type could be used in
various sections of the application. This
type analysis would provide the following
advantages: 1) operations would be reused,
2} there would be fewer main types to
manage, and 3) families of types would be
developed that would inherit properties from
each other.

SUMMARY

In spite of a lack of experience in Ado
at the beginning of the project, the Ado
team was able to develop a very suitable
dynamics simulator in Ado which meets the

requirements originally developed for the
FORTRAN development effort. The overall cost
of the projects appears to be similar and
early indications of reuse potential in the
Ado project are very encouraging. Most of
the problems encountered by the Ado team are
surmountable. Many are either caused by a
lack of experience with Ado or an immaturity
of the tools. Both of these problems will be
resolved in time.

There are still many unanswered
questions to be considered on this project--
for example, nothing at all has been

5207

mentioned about maintainability, rellablllt
or performance. It is still too early t
look at these results on this project, but
research efforts are continuing on thi
project and several other Ada project in th
SEL. Hopefully, these efforts will provid
even more answers about the use Ado in th
future.

REFERENCES

4-7

.

.

Agresti, W., Church, V., Card, D., et

al. "Designing with Ado for Satellit
Simulation: A Case Study," Proceeding
of]st Annual Symposium on Ad
Applications for NASA Space Station
Houston, Texas, June 1986.

Brophy, C. and Godfrey, S.,et. al
"Lessons Learned in the Implementatio:
Phase of a Large Ado Project,
Proceedings of the Washington Ad
Technical Conference, March 1988.

3. Goddard Space Flight Center Ada User':
Group. Ado Style Guide (Version 1.1)
Goddard Space Flight Center document
SEL-87-002, June 1987.

4. Godfrey, S., and Brophy, C. Assessin(
the Ado Design Process and It:
Implications= A Case Study, Goddar(
Space Flight Center document, SEL-87
004, July]987.

,

6.

.

.

McGarry, F., Page, G., et. al.
Recommended Approach to Softwar(
Development, Goddard Space F1igh_
Center document, SEL-8]-20S, April
1983.

McGarry, F., and Nelson, R. AR
Experiment with Ado-The GRO Dynaaic5
Simulator, Goddard Space Flight Center,
April]985.

Murphy, R. and Stark, M. Ada Trainin_
Evaluation and Recommendations, Goddar_
Spoace Flight Center, October]985.

Nelson," R. "NASA Ado Experiment--
Attitude Dynamics Simulator,
Proceedings of Washington Ad_
Symposium, March, 1986.

g.Seldewitz, E. and Stark, M. "Towards a
General Object Oriented Software
Development Methodology," Proceedings of
]st International Conference on Ada

Applications for the Space Station, June
1986.

IO. Seldewitz, E. and Stark, M. General
Object Oriented Software Development,
Goddard Space Flight Center document, SEL-
86-002, August 1986.

I]. $tark¢ M. and Seidewitz, E. "Towards a
General Object Oriented Ada Lifecycle,"
Proceedings of Joint Conference on Ada
Tech/Washington Ada Symposium, March Ig86.

5207

4-8

